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A New Chemiluminescent Reaction Path for Organic Peroxides.
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by

Ja-young Koo and Gary B. Schuster*

QR%&K%E&’ The thermal decomposition of diphenoylperoxide in the presence
of certain aromatic hydrocarbons generates benzocoumarin (%) and light
corresponding to the fluorescence spectrum of the hydrocarbon. It is
shown that this chemiluminescence does not result from conventional energy
transfer from some electronically excited peroxide decomposition product

to the aromatic hydrocarbon. Instead, the chemiluminescence is initiated

t .
+ A — Q * G0z Arkr
2

by electron transfer from the hydrocarbon to the peroxide followed by rapid

decarboxylation and back electron transfer to form the electronically excited
hydrocarbon. The yield of light from this process is quite high. It is

suggested that a similar mechanism may be operating in several previously

described chemiluminescing systems.
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We would like to report an efficient new chemiluminescent reaction
that delineates an apparently important class of chemiluminescent processes
and provides insight into several previously reported light producing reactions.
In general, the exothermic decomposition of peroxides to directly generate
electronically excited state carbonyl compounds has formed the basis for
nearly all of organic chemiluminescence.! In this communication we will
outline a reaction sequence in which diphenoylperoxide (l) undergoes chemically
initiated electron exchange with an aromatic hydrocarbon to directly form the
electronically excited singlet state of the hydrocarbon which, in turn, emits
a photon of visible light.

Thermolysis of a dilute solution of diphenoylperoxide? in CH.Cl1, at ca.
24° for 24 hr resulted in the formation of benzocoumarin (2) in 75% yield3
and polymeric peroxide, (equation 1). Under these conditions there was

virtually no chemiluminescence from this reaction. However, addition of

+ CO, + Polymer (1)

2

certain aromatic hydrocarbons (see Figure 2) to the reaction mixture resulted
in efficient light formation. The spectrum of the emission corresponds in all
cases to the fluorescence of the added hydrocarbon.

Such an observation is not unique among chemiluminescent systems and
has been attributed to electronic energy transfer to‘;he added hydrocarbon from

a product molecule formed in an excited state. However, in this case, the unusual
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observation was made that while 9,10-diphenylanthracene (DPA) was quite

effective at promoting light formation, 9,10-dibromoanthracene and biacety!l

were essentially completely ineffective." Moreover, incorporation of the aromatic

hydrocarbon in the reaction solution increased the rate of consumption of

the diphenoylperoxide. These observations indicate a special interaction

of the aromatic hydrocarbon with the peroxide rather than simple energy

transfer as the light forming step. 4
The chemiluminescence observed from peroxide l and aromatic hydrocarbons

is strictly first order in peroxide concentration for more than 5 half-lives.

The effect of added aromatic hydrocarbon on the observed rate constant is
first order in hydrocarbon and can be represented by a simple kinetic
expression, equation 2, where k, is the rate constant for the unimolecular

reaction and k, for the hydrocarbon dependent reaction.

TR

3 k = k, + k, [Aromatic Hydrocarbon] (2)

obs
Additional evidence that the chemiluminescence is a result of the

e Naga
-

i bimolecular reaction is revealed by the effect of aromatic hydrocarbon

concentration on the emitted light intensity. If the unimolecular reaction

is responsible for light generation, then at high hydrocarbon concentration,
where nearly all of the peroxide reacts by the bimolecular path, the hydrocarbon
should act as a quencher of the chemiluminescence. Figure 1, a reciprocal

plot of intensity against concentration, shows that the chemiluminescent

; intensity is a linearly increasing function of the aromatic hydrocarbon

. concentration even when greater than 90% of the reaction of l proceeds

4 through the bimolecular path. Thus, for the cases studied, the formation

of light must be a consequence of the reaction of aromatic hydrocarbon

with ground state peroxide.




The nature of this interaction was probed by examining the effect of
hydrocarbon structure on the rate constant for the bimolecular reaction.
Figure 2 shows a plot of the observed first order rate of chemiluminescence
decay against hydrocarbon concentration according to equation 2 for a series
of hydrocarbons. As predicted by equation 2, all of the hydrocarbons pass
through the same intercept (k.), however, the slopes (k.) are strongly
dependent on the structure of the hydrocarbon. Figure 3 shows a plot of
the natural log of k, against the one electron oxidation potential of the
aromatic hydrocarbons. The excellent correlation between the observed rate
and the oxidation potential indicates that the initiating step in the
chemiluminescent process is an electron transfer from the hydrocarbon to the
peroxide.®> In the scheme below, we suggest a mechanism for this chemiluminescent

reaction consistent with our observations.
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Induced decomposition of peroxidic compounds by nucleophiles® and redox
metals’ is well known. Studies of the electrochemical reduction of diacyl
peroxides indicate that the electron transfer is irreversible.® In the case
under study the cage radical ion pair formed by the initial electron transfer
from ghe hydrocarbon to the peroxide has a facile reaction path available.

Decarboxylation followed by carbon oxygen bond formation results in the

radical anion of benzocoumarin. We have determined that the reduction ]
potential of benzocoumarin is -1.92 eV (vs. SCE).? Thus, back electron |
transfer from the radical anion of 2 to the radical cation of the aromatic :
hydrocarbon is sufficiently exothermic to generate the electronically

excited singlet state of the hydrocarbon. Such reactions have been observed

to generate light during electrogenerated chemiluminescence.!? An important A?

key feature of this new chemiluminescent mechanism is the rapid chemical
reaction of what was a very easily reduced compound to form a strongly
reducing species within the solvent cage.

The total yield of electronically excited states for this reaction should be
sensitive to a number of factors such as the nature of the hydrocarbon, the
rate of decarboxylation, the cage lifetime, the solvent polarity, and the excited
state yield on back electron transfer. We have compared the chemiluminescence
of l with perylene to tetramethyldioxetane.l! Preliminary results indicate that
for this system the yield of photons is ca.10 + 5%. Thus, even though
the reaction has not been optimized, the light yield is remarkably high.

Several previously reported chemiluminescent reactions appear to be
proceeding by the proposed electron exchange mechanism. The well known
oxalate ester system is reported to be "catalyzed" by aromatic hydrocarbons.!3
Chemiluminescence from a-peroxylactones appears to be strongly dependent

upon the nature of the aromatic hydrocarbon.l* The reaction of phthaloyl

- - . R——— e e v g -
T . e . I AN 3 A SR * *
' g




T I T

RN SR G A s ) e

T

L

—~

L D

i

E®

.

Sy A
-

peroxide almost certainly proceeds by the proposed mechanism.!® OQur recent
report of chemiluminescence from a suspected cyclic diacyl peroxide fits this
interpretation.!® Chemically initiated electron exchange luminescence may be
a general phenomenon responsible for many chemi- and bioluminescent reactions.
Further efforts to unravel the details of these chemiluminescent processes
and probe the generality of this mechanism are underway.
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Captions for Figures

Figure 1. Reciprocal plot of chemiluminescence intensity against DPA
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concentration in CH,C1, at 32.5°; [l] =5 x 10'5 M.

glgxxsm%. Effect of added aromatic hydrocarbon concentration on the
reaction rate for peroxide l in CH,C1, at 32.5°%; [l] =5 x 10'5 M.

Elggxgmz. Correlation of log k, and oxidation potentia]]7 for the chemically
initiated electron exchange Tuminescence of peroxide 1. Note that the

point numbers correspond to those in Figure 2 and that 8 is pyrene.
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